

Abstracts

General coupling matrix synthesis methods for Chebyshev filtering functions

R.J. Cameron. "General coupling matrix synthesis methods for Chebyshev filtering functions." 1999 *Transactions on Microwave Theory and Techniques* 47.4 (Apr. 1999 [T-MTT]): 433-442.

Methods are presented for the generation of the transfer polynomials, and then the direct synthesis of the corresponding canonical network coupling matrices for Chebyshev (i.e., prescribed-equiripple) filtering functions of the most general kind. A simple recursion technique is described for the generation of the polynomials for even- or odd-degree Chebyshev filtering functions with symmetrically or asymmetrically prescribed transmission zeros and/or group delay equalization zero pairs. The method for the synthesis of the coupling matrix for the corresponding single- or double-terminated network is then given. Finally, a novel direct technique, not involving optimization, for reconfiguring the matrix into a practical form suitable for realization with microwave resonator technology is introduced. These universal methods will be useful for the design of efficient high-performance microwave filters in a wide variety of technologies for application in space and terrestrial communication systems.

[Return to main document.](#)